Storage Class Memory:
Coming to a Datacenter Near You

Report No. FI-NVM-SCM-1115
Contents

CONTENTS ... IV
LIST OF FIGURES .. IX
LIST OF TABLES .. XIV
EXECUTIVE SUMMARY .. 1
MEMORY OVERVIEW ... 2
 Introduction ... 2
 The Memory Hierarchy .. 2
 SRAM .. 3
 Concept .. 3
 Technology Evolution ... 4
 DRAM .. 6
 Concept .. 6
 Technology Evolution .. 6
 NOR Flash .. 10
 Concept ... 10
 Technology Evolution .. 12
 NAND Flash ... 16
 Concept ... 16
 Technology Evolution .. 18
 Hard Disk Drive Trends .. 23
STORAGE CLASS MEMORIES ... 28
 Why Storage Class Memory? .. 28
 M-class SCM ... 29
 S-class SCM .. 30
PHASE CHANGE MEMORY .. 31
 Concept ... 31
 Basic Operation ... 32
 Technology ... 34
 Technology Evolution ... 34
 Material .. 44
 Selection Device ... 47
<table>
<thead>
<tr>
<th>Technology Scaling</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>55</td>
</tr>
<tr>
<td>Design</td>
<td>55</td>
</tr>
<tr>
<td>Multi-level Cell PCM</td>
<td>57</td>
</tr>
<tr>
<td>PCM Cost Drivers</td>
<td>60</td>
</tr>
<tr>
<td>Electrical and Performance Characteristics</td>
<td>61</td>
</tr>
<tr>
<td>Set Time</td>
<td>61</td>
</tr>
<tr>
<td>Reset Current</td>
<td>62</td>
</tr>
<tr>
<td>Reliability</td>
<td>64</td>
</tr>
<tr>
<td>Endurance</td>
<td>66</td>
</tr>
<tr>
<td>Retention</td>
<td>68</td>
</tr>
<tr>
<td>PCM (3D XPoint) as a M-SCM</td>
<td>69</td>
</tr>
<tr>
<td>The Latency Issue</td>
<td>71</td>
</tr>
<tr>
<td>The Endurance Issue</td>
<td>72</td>
</tr>
<tr>
<td>Conclusion</td>
<td>73</td>
</tr>
</tbody>
</table>

Spin-Transfer Torque (STT) MRAM

<table>
<thead>
<tr>
<th>Concept</th>
<th>74</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Operation</td>
<td>76</td>
</tr>
<tr>
<td>Technology</td>
<td>78</td>
</tr>
<tr>
<td>Storage Element</td>
<td>78</td>
</tr>
<tr>
<td>Selection Device</td>
<td>94</td>
</tr>
<tr>
<td>3D Integration</td>
<td>95</td>
</tr>
<tr>
<td>Scaling</td>
<td>95</td>
</tr>
<tr>
<td>Architecture</td>
<td>96</td>
</tr>
<tr>
<td>STT-MRAM Cell Design</td>
<td>96</td>
</tr>
<tr>
<td>Sensing Schemes</td>
<td>98</td>
</tr>
<tr>
<td>Multi Level Cells (MLC)</td>
<td>99</td>
</tr>
<tr>
<td>MRAM Cost Drivers</td>
<td>107</td>
</tr>
<tr>
<td>MRAM Fabrication and Process Complexity</td>
<td>107</td>
</tr>
<tr>
<td>Cell Efficiency</td>
<td>110</td>
</tr>
<tr>
<td>Yield</td>
<td>110</td>
</tr>
<tr>
<td>Electrical and Performance Characteristics</td>
<td>111</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Switching Time</td>
<td>111</td>
</tr>
<tr>
<td>Current / Power Consumption</td>
<td>112</td>
</tr>
<tr>
<td>Retention Time</td>
<td>113</td>
</tr>
<tr>
<td>Endurance and Wear Leveling</td>
<td>113</td>
</tr>
<tr>
<td>Write and Read Reliability</td>
<td>115</td>
</tr>
<tr>
<td>ECC</td>
<td>117</td>
</tr>
<tr>
<td>ReRAM</td>
<td>121</td>
</tr>
<tr>
<td>Basic Operation</td>
<td>122</td>
</tr>
<tr>
<td>Technology</td>
<td>123</td>
</tr>
<tr>
<td>Storage element</td>
<td>124</td>
</tr>
<tr>
<td>ReRAM Cell Design and Selection Devices</td>
<td>159</td>
</tr>
<tr>
<td>Architecture</td>
<td>172</td>
</tr>
<tr>
<td>ReRAM Chip Architecture</td>
<td>172</td>
</tr>
<tr>
<td>Interface Circuits for Reading and Writing</td>
<td>173</td>
</tr>
<tr>
<td>Cell/Array Efficiency</td>
<td>177</td>
</tr>
<tr>
<td>New Applications</td>
<td>182</td>
</tr>
<tr>
<td>ReRAM Cost Drivers</td>
<td>184</td>
</tr>
<tr>
<td>ReRAM Fabrication and process complexity</td>
<td>185</td>
</tr>
<tr>
<td>Electrical & Performance Characteristics</td>
<td>188</td>
</tr>
<tr>
<td>Switching Time</td>
<td>188</td>
</tr>
<tr>
<td>Current and Power Consumption</td>
<td>188</td>
</tr>
<tr>
<td>Forming and Programming Voltage</td>
<td>189</td>
</tr>
<tr>
<td>Endurance</td>
<td>190</td>
</tr>
<tr>
<td>Retention</td>
<td>190</td>
</tr>
<tr>
<td>SCM COMPARISON</td>
<td>191</td>
</tr>
<tr>
<td>Electrical performance characteristics</td>
<td>191</td>
</tr>
<tr>
<td>Manufacturing complexity</td>
<td>192</td>
</tr>
<tr>
<td>Cost per Bit</td>
<td>193</td>
</tr>
<tr>
<td>ROADMAP</td>
<td>196</td>
</tr>
<tr>
<td>SRAM</td>
<td>197</td>
</tr>
<tr>
<td>DRAM</td>
<td>197</td>
</tr>
<tr>
<td>FeRAM</td>
<td>198</td>
</tr>
<tr>
<td>NOR Flash Memory</td>
<td>198</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1. Memory Hierarchy ... 3
Figure 2. SRAM Cell Schematic .. 4
Figure 3. 3D SRAM Technology ... 5
Figure 4. DRAM Cell .. 6
Figure 5. DRAM Cell Transistor Evolution .. 7
Figure 6. DRAM Cell Capacitor Trend .. 8
Figure 7. NOR Flash Program, Erase, Read ... 11
Figure 8. NOR Flash Cell (ETOX: EPROM thin oxide cell) .. 11
Figure 9. NOR Architecture ... 11
Figure 10. NOR Flash Cell ... 12
Figure 11. NOR Flash Technology Evolution .. 13
Figure 12. Drain Bias Margin .. 13
Figure 13. Multi-bit Charge Trapping Cell ... 14
Figure 14. 3D NOR Flash Cell .. 15
Figure 15. Virtual Ground NOR Flash ... 15
Figure 16. NAND Flash Cell Concept .. 16
Figure 17. NAND Flash Architecture ... 16
Figure 18. NAND Cell String ... 17
Figure 19. NAND Flash Program, Erase, Read ... 17
Figure 20. NAND Flash Technology Evolution ... 19
Figure 21. NAND Flash Memory Coupling Ratio, other coupling components, and Cross-talk 19
Figure 22. Bit line pitch scaling limitation issue .. 20
Figure 23. Electrons Stored on the Floating Gate ... 20
Figure 24. Simulated RTN Amplitude Distributions for scaled Floating Gate Technology Nodes ... 21
Figure 25. Equivalent circuit of the BiCS arrangement of vertical NAND strings............................ 22
Figure 26. 3D NAND Concepts .. 23
Figure 27. HDD Areal Density Trend ... 24
Figure 28. Maximum Sustained Bandwidth Trend ... 25
Figure 29. Average Latency Trend ... 25
Figure 30. Average Seek Time Trend ... 26
Figure 31. HDD Pricing Trend .. 27
Figure 32. Evolution of Memory/Storage Hierarchy .. 28
Figure 33. Basic PCM Cell Structure ... 31
Figure 34. PCM Set Operation ... 32
Figure 35. PCM Reset Operation .. 32
Figure 36. PCM I-V Curve ... 33
Figure 37. PCM Array Operation .. 33
Figure 38. Linear correlation between melting current and set resistance 35
Figure 39. 180nm Process µTrench PCM Process ... 36
Figure 40. Phase Change Memory with µTrench Cell ... 37
Figure 41. Lance structures ... 37
Figure 42. SABEC Process ... 38
Figure 43. PRAM Module .. 38
Figure 44. Phase Change Memory with Wall Cell ... 39
Figure 45. TEM images of dash-type confined cell structure ... 40
Figure 46. Simulated melting at the phase transformation core ... 40
Figure 47. Cross Sectional View TEM Micrograph of 7.5nm - 17nm Dash Confined Cell. 41
Figure 48. Carbon interlayer between OTS and phase change layer. 41
Figure 49. The concept of a projected memory device. 42
Figure 50. a) Square section SH geometry projection to meet the Wall 45nm working point. 43
Figure 51. GST Composition. 44
Figure 52. Electrical switching characteristics of IPMS device. 45
Figure 53. Selectors and PCM Array Architectures. 47
Figure 54. MOS and BJT Selector. 48
Figure 55. Section of PCM Array 45nm (Numonyx). 48
Figure 56. Diode Selector. 49
Figure 57. One layer of the PCMs array fully integrated with a CMOS technology. 50
Figure 58. Comparison of threshold behavior of OTS, alterable resistor PCM. 50
Figure 59. Self-selecting PCM device a) device structure and b) IV-characteristic. 52
Figure 60. Scaling potential of PCM devices demonstrated by CNT nanogap structure. 53
Figure 61. Scaling Parameters. 54
Figure 62. Heat flux management in a 45nm Wall architecture. 54
Figure 63. Samsung Phase Change Memory Device Evolution. 55
Figure 64. Micron (Numonyx) 1Gb 45nm Device. 56
Figure 65. MLC Write Approaches. 57
Figure 66. MLC Distribution. 58
Figure 67. Multi-level States as a Function of Pulse Tail. 58
Figure 68. 16-Level and 4-Level PCM. 59
Figure 69. MLC PRAM Amplitude Control Method from Initial Reset State. 59
Figure 70. PCM switching properties under incubation-field condition. 62
Figure 71. Dependence of Reset Current on Contact Area. 63
Figure 72. Reset Current Reduction with Ta₂O₃ Interfacial Layer. 63
Figure 73. Future Reset Current Trend. 64
Figure 74. Endurance as a function of Energy per Pulse. 65
Figure 75. Cell Scaling and Disturbance Reset Current Failure Window. 66
Figure 76. PCM Endurance. 67
Figure 77. Endurance of 17nm Dash-confined Cell at 4.5E-11J Reset Program Energy (red dot). 67
Figure 78. The changes in PCM cell after light write. 69
Figure 79. Memory Hierarchy with PCM as a System Memory. 70
Figure 80. Hybrid System with DRAM Cache and PCM. 70
Figure 81. Memory Subsystem Effects vs. PCM Buffer Organizations. 72
Figure 82. MRAM-Cell Requirements. 75
Figure 83. Schematic View of (a) Field-Induced Switching MRAM and (b) STT MRAM. 76
Figure 84. Spin Torque Transfer MRAM Concept. 77
Figure 85. Schematic View of a Typical STT Memory Element and TEM Cross-Section. 79
Figure 86. Illustration of the Spin Polarization Enhancement for a Dual Barrier Structure. 79
Figure 87. Normalized Switching Current Thresholds vs. Magneto-Resistance Ratio. 80
Figure 88. STT-MRAM Write Current Scaling for Different MTJ Structures. 81
Figure 89. Calculated Single Bit Cycle to Cycle Read Error Rate for three ΔI Values. 82
Figure 90. Measured Critical Switching Voltage and Break Down Voltage Distributions. 83
Figure 91. Switching Probability vs. Switching Pulse Width. 84
Figure 92. BER Curves Showing a Bifurcated Switching. 85
Figure 93. Planar MTJ Scaling: Thickness and Switching Current Density vs. Cell Width. 86
Figure 94. Comparison of (a) In-Plane STT-MRAM and (b) Perpendicular STT-MRAM. 86
Figure 95. Illustration of Perpendicular STT-MRAM Design. 87
Figure 144. Distribution of the measured HRS of the PCMO-based RSDs with various sizes
Figure 143. HRTEM image shows an un-reacted PCMO/Pt interface
Figure 142. Cross-sectional TEM image of a PCMO-based RSD
Figure 141. X-ray diffraction 0-2θ scan of memory stack with 30nm PCMO layer
Figure 140. PCMO-based device structure
Figure 139. The operation scheme of PCMO
Figure 138. Field enhancement structure to improve electro-forming step
Figure 137. Illustration of the initial forming process for WOX and other TMO
Figure 136. ECM integration in 130nm CMOS standard foundry technology.
Figure 135. Scaling characteristics of resistance distributions of ECM-cells
Figure 134. Read disturb characteristics for set and reset status
Figure 133. I-V characteristic of a memory cell in sweeping mode
Figure 132. CBRAM MLC capability for 2 Bits / cell
Figure 131. Racetrack Memory
Figure 130. MLC STT-MRAM Cell with Series Connected MTJs
Figure 129. Example of chalcogenide ReRAM of filament
Figure 128. (a) Unipolar operation of ReRAM. (b) Bipolar operation of ReRAM
Figure 127. Classification of resistive switching effects
Figure 126. Block reliability vs. Hamming weight
Figure 125. The Dual-ECC Memory Architecture with Intrinsic and Extrinsic ECCs.
Figure 124. Minimum Δ (Thermal Stability) Required to Get a 10 Year MTTF.
Figure 123. Sensing errors and disturbance errors of 1T1J structure
Figure 122. MTJ write error
Figure 121. Switching time of MTJ
Figure 120. Block Diagram of a Cache With Lookback Scheme
Figure 119. Operation of the Proposed Lookback Scheme
Figure 118. Trade-Off Between Operating Time and Writing Current of the STT-MTJ
Figure 117. Top view of MTJ, TEM Cross-Section and Key Process Flow of STT-MRAM
Figure 116. MRAM Sputtering Cluster Tools
Figure 115. Comparison of Different MTJ Designs at 350K
Figure 114. Probabilistic Programming
Figure 113. State Transition Graphs of Write Schemes
Figure 112. MLC with Field Compensation Layer
Figure 111. Stacked MTJ Cell Fabrication and Bit Cost Scaling
Figure 110. MLC STT-MRAM Cell with Series Connected MTJs
Figure 109. Schematic Illustration of MLC-MTJ
Figure 108. MLC in Single MTJs - Calculated TMR Ratio
Figure 107. Non-Destructive Self-Reference Sensing Scheme:
Figure 106. Shared Source-line: a) Schematic and b) Layout
Figure 105. 2T1MTJ Structure and Layout
Figure 104. 1T-1MTJ STT-MRAM Structure
Figure 103. MTJ Current Scaling Compared to the Current Scaling of Select Devices
Figure 102. Racetrack Memory Cell Array
Figure 101. Domain strip
Figure 100. Racetrack Memory
Figure 99. GSHE MTJ structure (a) 3-D view, (b) Top-down view
Figure 98. The precessional switching process in a MEJ
Figure 97. Comparison of In-Plane and Perpendicular MTJ
Figure 96. Scaling of Critical Switching Current for In-Plane and Perpendicular MTJ
Figure 95. MTJ write error
Figure 94. Sensing errors and disturbance errors of 1T1J structure
Figure 93. Domain strip
Figure 92. Racetrack Memory Cell Array
Figure 91. Switching time of MTJ
Figure 90. Block Diagram of a Cache With Lookback Scheme
Figure 89. Operation of the Proposed Lookback Scheme
Figure 88. Block reliability vs. Hamming weight
Figure 87. Classification of resistive switching effects
Figure 86. (a) Unipolar operation of ReRAM. (b) Bipolar operation of ReRAM
Figure 85. Example of chalcogenide ReRAM of filament
Figure 84. 2Mb CBRAM array based on 90nm DRAM technology
Figure 83. CBRAM MLC capability for 2 Bits / cell
Figure 145. The measured high resistances of RSD in comparison with the predicted scaling135
Figure 146. EPIR performance of PCMO-based RSD ...136
Figure 147. The measured Program and Erase currents in comparison with the predicted scaling..136
Figure 148. Schematic illustration of redox reaction in TaOx cell ..137
Figure 149. Cross section of fabricated 1T1R ReRAM cells based on 0.18µm CMOS process138
Figure 150. Different electrode materials for the TaOx-based VCM-cell138
Figure 151. IV-characteristic of the TaOx-based VCM cell ..139
Figure 152. Endurance properties (left) and data retention (right) of TaOx memory cells at 150°C.139
Figure 153. Proposed phase diagram for resistive memory switching in carbon144
Figure 154. Cell structure of carbon memory ...146
Figure 155. Forming of a carbon memory cell ..147
Figure 156. Resistance and current scaling trend for carbon memory ..148
Figure 157. Memristor ..150
Figure 158. The static state distributions of a memristive switch ..151
Figure 159. The time dependency of ON (a) and OFF (b) switching at different ext. voltages V ...151
Figure 160. Fabrication principle for fused silica imprint molds with arrays of 8 nm nanowires ...154
Figure 161. SEM images of device arrays ..155
Figure 162. DC-switching properties for devices with different dimensions156
Figure 163. Result of retention test at room temperature ...157
Figure 164. Pulse switching behavior for the 8 nm devices ..158
Figure 165. Endurance test result for the 8 nm devices ...159
Figure 166. The conventional 3D stacking memory island ..160
Figure 167. Crossbar array design without switching device ...161
Figure 168. SEM images of multilayer crossbar memory structures with a 45° angle of view162
Figure 169. Four layers 3D structure with bipolar CMOx ReRAM devices162
Figure 170. The 3D high-density interleaved memory design for bipolar ReRAM cell163
Figure 171. A ReRAM cell design with MOSFET as switching device164
Figure 172. The vertical BJT structure ...165
Figure 173. Schematic view of a 3D-VRAM array with vertical access transistor166
Figure 174. R-RAM memory array. (a) 1D1R structure (b) use NOD as switching device168
Figure 175. Stacking structure of unipolar ReRAM crossbar array ...169
Figure 176. The composition of stacking structure of forward and reverse deposition device169
Figure 177. FAST selector ...170
Figure 178. Passive crossbar integration of ReRAM devices with FAST selectors170
Figure 179. Threshold switching effect in Niobium Oxide based devices171
Figure 180. (a) Crossbar memristor array with selected bit for writing ..173
Figure 181. Memristor read circuits ...174
Figure 182. Test data for (a) Voltage divider (b) trans-impedance amplifier174
Figure 183. Circuit schematic for sigma delta read circuit ..175
Figure 184. Memristor write circuit ...175
Figure 185. ReRAM switching using write driver ..176
Figure 186. Simple crossbar structure of memory island ..177
Figure 187. The SEM of crossbar memory island ...177
Figure 188. Impact of interconnection resistance (a) ...179
Figure 189. Complementary ReRAM cell ...179
Figure 190. Read voltage margin of complementary ReRAM cell ...180
Figure 191. Unfolded architecture ..181
Figure 192. Neural network ..182
Figure 193. Memristor based FPGA designs ...183
List of Tables

Table 1. Target Specs for SCM ... 29
Table 2. Estimated Process Complexity for a PCM Manufacturing 60
Table 3. Required Room Temperature Values for ΔH 81
Table 4. Estimated Process Complexity for a STT-MRAM Manufacturing ... 109
Table 5. MRAM Memory Comparison .. 111
Table 6. Estimated Process Complexity for a ReRAM Manufacturing 185
Table 7. SCM electrical performance characteristics 191
Table 8. SCM relative manufacturing complexity 192
Table 9. SCM relative cost per bit .. 193
Table 10. Company Memory Matrix .. 235
Table 11. HMCC Spec 2.0 vs. 1.1 .. 245
Table 12. DRAM Comparison ... 246
About the Authors

Hai (Helen) Li received her B.S. and M.S. degrees in microelectronics from Tsinghua University, Beijing, China, and Ph.D. degree from the Electrical and Computer Engineering Department at Purdue University, West Lafayette, Indiana, United States, in 2004. She is currently an Associate Professor with the Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States. Previously, Dr. Li worked at Qualcomm Inc., Intel Corp., Seagate Technology, and Polytechnic Institute of New York University. She has extensive industry experience in circuit-level optimization and design for STT-MRAM and ReRAM technologies. Her current research focuses on emerging memory technologies, architecture/circuit/device co-design, emerging memory design, brain-inspired computing systems, hardware implementation and acceleration for machine learning, and 3D integration technology and design.

Dr. Li has authored and co-authored over 100 technical papers published in peer-reviewed journals and conferences and holds 71 granted U.S. patents. Her book “Nonvolatile Memory Design: Magnetic, Resistive, and Phase Changing” was published by CRC Press in 2011. Dr. Li received five best paper awards and five best paper nominations from ISQED, ISLPED, DATE, ISVLSI, ASPDAC, and ICCAD. She is the associate editor of TVLSI, TMSCS, and TODAES and has served as organization and technical program committee member for more than 20 international conference series. Dr. Li was the recipient of NSF CAREER award in 2012 and DARPA Young Faculty Award (YFA) in 2013.

Stefan Slesazeck is a Senior Scientist at NaMLab GmbH. Prior to NaMLab, he was a project leader for the pre-development of new memory concepts with Qimonda Dresden (Germany) focusing on concept evaluation for 1T-DRAM. As a device engineer at Infineon Technologies Stefan worked on the module development of 3D DRAM access devices in 65nm and 46nm buried word line technology and pre-development of FinFET and floating body devices. Stefan received a Ph.D. in microelectronics from the Dresden University of Technology, Germany. His current research focuses on electrical characterization, device reliability investigation and memory concept evaluation for various memories, such as resistive memory, ferroelectric field effect transistor and emerging memristor applications.

Stefan has published more than 50 technical papers in refereed journals and conferences, filed more than 15 U.S. patents and co-authored 2 book chapters.
Gregory Wong is the Founder and Principal Analyst of Forward Insights. Greg has in-depth knowledge of the cost, performance and markets and applications of multi-bit per cell NOR, NROM and NAND flash memories, emerging memories and solid state drives. Greg previously held a number of management positions in strategic planning, business development and engineering at Hitachi, Siemens, ProMOS and Qimonda/Infineon. At Infineon/Qimonda, Greg was responsible for driving manufacturing efficiencies and investment planning for a DRAM fab in Taiwan. Subsequently, he became responsible for competitive intelligence and reverse engineering for flash memories focusing on flash memory vendors’ strategies, process technologies, design architectures, product performance, manufacturing capabilities and costs.

Greg earned his B.A.Sc. degree in Electrical Engineering from the University of Toronto, and his M.B.A. degree from the Richard Ivey School of Business in London, Ontario.
About NaMLab

NaMLab (Nano-electronic Materials Laboratory)

The research at NaMLab focuses on materials for electronic devices and new device concepts. Among these are high-k materials for capacitors, transistors and other applications, novel switching devices including memristors, nanowire based electronics as well as materials for energy harvesting devices such as solar cells.

Future nano-electronic products require the development of new materials that are not currently available. NaMLab consequently focuses its research activities on materials and applications that show the potential to offer significant advantages over materials and products used today. In addition to investigating and characterizing new materials, NaMLab is undertaking research on the integration of these materials into semiconductor products with nano-scale dimensions.

NaMLab, originally founded as a research joint venture between Qimonda AG and the TU Dresden in July 2006, has its roots in the Corporate Research Department of Infineon AG and is now owned completely by the Technical University of Dresden. NaMLab receives basic financing from the Saxon Ministry of Science and Arts (SMWK). The company benefits from excellent working conditions in its office and clean room building opened in October 2007 and located within the TU Dresden campus.

Characterization:
- physical characterization (conductive AFM, SSRM, SEM)
- electrical device characterization;
 - 200mm/300mm wafer probe stations
 - 80K – 500K temperature range
 - Analytical measurements of memory cells (lifetime, switch time, storage and deletion windows)
 - charge carrier mobility with Hall and split-C(U)
- optical characterization (FTIR ellipsometry, μRaman and photoluminescence)
- dielectric reliability (TDDB, BTI, SILC)
- high-k material development
 - oxides: AlO, TiO, ZrO, HfO and mixtures
 - metals: Al, Pt, Au, TiN, Ti, Ru
 - methods: ALD, MBE, PVD, evaporation

Development:
- materials for emerging memories
- high-k stacks for capacitors and transistors
- development of new memory concepts
- charge trap device development
- development of explorative devices based on silicon nano wires
Contact

NaMLab gGmbH
Noethnitzer Str. 64
01187 Dresden
Germany
T +49.351.21.24.990-00
F +49.351.475.83.900
E-mail: info@namlab.com

www.namlab.com
About Forward Insights

Forward Insights provides independent, insightful market research, consulting and information services focusing on semiconductor memories and solid state storage. The company offers unparalleled depth and understanding of the strategic, market and technical complexities of the semiconductor memory landscape.

Services

Forward Insights offers a unique and comprehensive strategic, financial, market and technical perspective on the semiconductor memory industry. The professional services offered include:

- Strategy Consulting
- Financial & Cost Analysis
- Market Forecasts
- Technology Analysis
- Competitive Analysis
- Surveys
- Training
- Custom projects

Contact

12 Appian Dr.
North York, Ontario
Canada M2J 2P6
Tel.: +1-408-565-8207
E-mail: greg@forward-insights.com

Market and technical intelligence for semiconductor memories, emerging memory technologies and solid state drives.

www.forward-insights.com