Flash Memory Trends

Gregory Wong, Founder and Principal Analyst
greg@forward-insights.com
Agenda

- Flash Memory Overview
 - Architecture
 - Multi-level Cell Storage

- Technology Overview
 - Technology Evolution
 - Roadmaps
 - Scaling Challenges

- Vendors

- Summary
Array Architectures

- Parallel architecture
 - 10F²
- Serial architecture
 - 4F²
- Parallel architecture
 - 7F²
NAND vs. NOR

Flash Memory

<table>
<thead>
<tr>
<th>Random Access</th>
<th>Serial Access</th>
</tr>
</thead>
</table>

NOR

- **Access time:**
 - Random: 60-120ns
 - Page mode/burst mode: 30ns/15ns

- **Write speed**:
 - Random: 10µs/byte or word

- High Performance optimized
 - Fast random read
 - Fast random write

NAND

- **Access speed**:
 - Random: 10-50µs
 - Serial (page mode): 25-50ns

- **Write speed**:
 - Random: 200µs/byte
 - Page: 200µs/page (0.4µs/byte)

- Low Cost
 - Small cell size
 - High sustained write
 - Page write
NROM vs. Floating Gate

NROM
- localized storage in nitride traps
- 2 *physical* bits per cell
- multi-level cell storage allows storage of 2 *electrical* bits per cell

Floating Gate
- physical storage of charge in floating gate
- multi-level cell storage allows storage of 2 or more *electrical* bits per cell
• Need to transition to multi-bit technologies
Multi-level Cell Storage - NAND

- 4 bits/cell
- 3 bits/cell
- 2 bits/cell
- 1 bit/cell

Substrate

CG

FG

S

D

of cells

1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

of cells

111 110 101 100 011 010 001 000

of cells

111 110 101 100

of cells

1 0
Multi-level Cell Storage - NROM

2 bits/cell

4 bits/cell

Santa Clara, CA USA
August 2008
Multi-level Cell Storage Cost Advantage

Samsung

4Gb SLC NAND
70nm
156mm²

Hynix

4Gb SLC NAND
70nm
145mm²

Toshiba

8Gb MLC NAND
70nm
146mm²

Saifun

8Gb Quad NROM
75nm
120mm²

Toshiba

16Gb 4b/c NAND
70nm
168mm²

Images: Semiconductor Insights, Inc., Saifun Semiconductors, Toshiba
Programming Mechanisms

NOR

- CHE

NAND

- FN tunneling

NROM

- CHE
Erase Mechanisms

- **NOR**
 - FN tunneling

- **NAND**
 - FN tunneling

- **NROM**
 - BBHII
Read Mechanisms

NOR

NAND

NROM

Selected WL

Unselected WL

BL=0.8V 0.8V 0.8V 0.8V

4.5V

0V

4.5V

0V

4.5V

0V

Substrate
NOR Flash Technology Evolution

2000 - 180nm

2002 - 130nm

2004 - 90nm

2006 - 65nm

2008 - 45nm

Images: Intel Corp.
NROM Flash Technology Evolution

2002 - 230nm

2004 - 110nm

2006 - 90nm

2008 - 65nm

2009 - 45nm

Images: Spansion
• NROM code to be superseded by Eclipse
Data Flash Density Trend

- MLC NAND
- NORM QUAD

Source: Forward Insights
Code – Bit Size Trend

Volume Production

Bit size (µm²)

Mirrorbit MLC NOR
NAND - Bit Size Trend

![Graph showing the trend in bit size for SLC, MLC, 8LC, and 16LC NAND from 2003 to 2012.](image-url)
Scaling Challenges

<table>
<thead>
<tr>
<th>NOR Flash</th>
<th>NAND Flash</th>
<th>NROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Short channel effect</td>
<td>• Inter-cell interference</td>
<td>• Short channel effect</td>
</tr>
<tr>
<td>• Contact and isolation fill</td>
<td>• CG-FG coupling</td>
<td>• Bit disturbs</td>
</tr>
<tr>
<td>• Charge storage reduction</td>
<td>• Gap fill</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Charge storage reduction</td>
<td></td>
</tr>
</tbody>
</table>
NOR Flash Vendors

- Numonyx
 - $2.4 billion merger of ST’s (48.6%) and Intel’s (45.1%) NOR businesses; Francisco Partners owns 6.3%
 - Includes ST’s Catania and AMK8 fabs, stake in ST-Hynix Wuxi fab and Intel’s fab 18
 - Intel contributed Pudong & Kiveta assembly & test facilities
 - Transitioning to 45nm

- Samsung
 - Focus on high density NOR for MCPs
 - NOR manufactured on legacy 200mm fabs
 - 65nm in volume

- Toshiba
 - NOR flash for MCPs
 - 1st MLC products on 70nm ramping
NOR Flash Vendors

- Macronix
 - Focus on serial flash and low density parallel NOR flash on 110nm

- Winbond
 - Focus on serial flash
 - 90nm NOR flash in 300mm fab ramping in 2H/08
NAND Flash Vendors

- **Samsung**
 - Fungible production capacity between NAND and DRAM
 - Volume production of 42nm

- **Toshiba/SanDisk**
 - NAND manufacturing JV: FlashPartners, FlashAlliance
 - Fundamental NAND and MLC patents
 - Volume production of 43nm
 - First to market with x3, x4 technology: 16Gb x3 in production

- **Hynix/Numonyx**
 - NAND joint development and manufacturing JV
 - Volume production of 48nm
NAND Flash Vendors

- Intel/Micron
 - NAND joint development and manufacturing JV
 - Sampling 34nm 32Gb MLC device

- Powerchip
 - 70nm in volume
 - 50nm in development
NROM Vendors

• Spansion
 – Acquired NROM patent owner, Saifun in E’07
 – Product and technology licensing agreement with SMIC for 65nm
 – Volume production of 65nm at SP1 300mm wafer fab

• Macronix
 – Code flash products based on 150nm NROM technology
 – 75nm XtraROM in production

• SMIC
 – Production of 2Gb NROM for data storage
 – Production of 8Gb NROM Quad in 2H/08
Summary

- NOR and NROM most suitable for code storage; NAND for data storage

- Move to multi-bit storage to drive further cost reductions as technology scaling slows

- Cost benefits of 3bit/cell & 4bit/cell to materialize in next two years
Acknowledgements

Special thanks for the use of material/images

- IEEE
- Intel
- Semiconductor Insights
- Spansion